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Abstract
Zero shot learning (ZSL) identifies unseen objects for which no training images are available. Conventional ZSL approaches
are restricted to a recognition setting where each test image is categorized into one of several unseen object classes. We
posit that this setting is ill-suited for real-world applications where unseen objects appear only as a part of a complete scene,
warranting both ‘recognition’ and ‘localization’ of the unseen category. To address this limitation, we introduce a new ‘Zero-
Shot Detection’ (ZSD) problem setting, which aims at simultaneously recognizing and locating object instances belonging to
novel categories, without any training samples. We introduce an integrated solution to the ZSD problem that jointly models
the complex interplay between visual and semantic domain information. Ours is an end-to-end trainable deep network for
ZSD that effectively overcomes the noise in the unsupervised semantic descriptions. To this end, we utilize the concept of
meta-classes to design an original loss function that achieves synergy between max-margin class separation and semantic
domain clustering. In order to set a benchmark for ZSD, we propose an experimental protocol for the large-scale ILSVRC
dataset that adheres to practical challenges, e.g., rare classes are more likely to be the unseen ones. Furthermore, we present a
baseline approach extended from conventional recognition to the ZSD setting. Our extensive experiments show a significant
boost in performance (in terms of mAP and Recall) on the imperative yet difficult ZSD problem on ImageNet detection,
MSCOCO and FashionZSD datasets.
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1 Introduction

Humans have the amazing ability to develop a generalizable
knowledge-base that compiles our sensorimotor experiences
over time and relates them to abstract concepts. For instance,
if we have seen visual examples of ‘horse’ and ‘donkey’,
we can easily recognize their distinctive individual charac-
teristics, such as horses have short ears, long tails and thin
coats, while donkeys are shorter in height, have thick coats,
long ears and shorter tails. These associations between visual
and semantic content enable us to make inferences about
unobserved content based on our previous knowledge. As an
example, if we are described an animal that has close resem-
blance to both a horse and a donkey and which is smaller
than a horse but bigger than a donkey, we can imagine what
a ‘mule’ looks like. Such an intelligent reasoning ability
regarding the unobserved world would be highly valuable
for life-long and self-learning machines.
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Since its inception, the main focus of zero-shot learning
research has been object classification (Akata et al. 2016;
Changpinyo et al. 2016; Frome et al. 2013; Kodirov et al.
2015;Lampert et al. 2014;LeiBa et al. 2015;MaximeBucher
and Jurie 2016; Morgado and Vasconcelos 2017; Romera-
Paredes and Torr 2015; Xian et al. 2018a; Zhang et al.
2017; Zhang and Saligrama 2015, 2016). Although zero-shot
recognition is still an open research problem, we hypothe-
size that this setting has a number of limitations that render it
unsuitable for real-life applications. First, it assumes a sim-
ple case where only a single dominant category is present in
an image. Second, the predictions are made for a complete
scene, while in practice, the attributes and semantic descrip-
tions are generally relevant to individual objects rather than
the entire scene. Third, zero-shot recognition provides an
answer to unseen categories in elementary tasks, e.g., classifi-
cation and retrieval, but it cannot be scaled to advanced tasks,
such as scene interpretation and contextual modeling, which
require a fundamental reasoning for all salient objects in the
scene. Fourth, global attributes are more susceptible to back-
ground variations, viewpoint, appearance and scale changes
and practical challenges, such as occlusions and clutter. As
a result, image-level ZSL fails for complex scenes where a
diverse set of competing attributes that belong to multiple
object categories exists.

Zero-Shot Object Detection: To address the above-
mentioned challenges, we introduce a new problem setting
called zero-shot object detection. As illustrated in Fig. 1,
instead of merely classifying images, our goal is to simulta-
neously detect and localize each individual instance of new
object classes, even in the absence of any visual examples
of those classes during the training phase. In this regard,
we propose a new zero-shot detection protocol built on top
of the ILSVRC—Object Detection Challenge (Russakovsky
et al. 2015). The resulting dataset is very demanding because
of its large-scale, diversity, and unconstrained nature, and
also unique due to its leveraging of WordNet semantic
hierarchy (Miller 1995). Taking advantage of the semantic
relationships among object classes, we use the concept of
‘meta-classes’1 and introduce a novel approach to update the
semantic embeddings automatically. Raw semantic embed-
dings are learned in an unsupervised manner using text
mining and, therefore, they have considerable noise. Our
optimization of the class embeddings proves to be an effec-
tive way to reduce this noise and learn robust semantic
representations.

ZSD has numerous applications in novel object local-
ization, retrieval and tracking, and determining an object’s
relationships with its environment using only the available
semantics, e.g., an object name or a natural language descrip-
tion.Although a critical problem, ZSD is remarkably difficult

1 Meta-classes are obtained by clustering semantically similar classes.

(c) Zero Shot Recognition
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(d) Zero Shot Object Detection
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Unseen :      harmonica            bench
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Unseen :      harmonica            bench

Recognition Detection

Fig. 1 ZSD deals with a more complex label space (object labels
and locations) with considerably less supervision (i.e., no examples
of unseen classes). a The traditional recognition task only predicts seen
class labels. b The traditional detection task predicts both seen class
labels and bounding boxes. c The traditional zero-shot recognition task
only predicts unseen class labels. d The proposed ZSD predicts both
seen and unseen classes and their bounding boxes

compared to its classification counterpart. While the zero-
shot recognition problem assumes there is only a single
primary object in an image and attempts to predict its cate-
gory, theZSD task has to predict both themulti-class category
label and precise location of each instance in a given image.
Since there can be a prohibitively large number of possi-
ble locations for each object in an image and because the
semantic class descriptions are noisy, a detection approach
is much more susceptible to incorrect predictions compared
to classification. Therefore, a ZSD method is likely to pre-
dict a class label that might be incorrect but is visually and
semantically similar to the corresponding true class. For
example, wrongly predicting a ‘spider’ as ‘scorpion’, where
both are semantically similar because they are invertebrates.
To address this issue, we relax the original detection prob-
lem to independently study the confusions emanating from
the visual and semantic resemblance between closely linked
classes. For this purpose, alongside the ZSD, we evaluate
our model under zero-shot meta-class detection, zero-shot
tagging, and zero-shot meta class tagging settings. Notably,
the proposed network is trained only ‘once’ for the ZSD
task and the additional tasks are used during evaluations
only.

Our Contributions: Apart from a new large-scale pro-
tocol for ZSD, we propose an end-to-end trainable network
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for the ZSD problem that concurrently relates visual image
features with semantic label information. This network uses
a semantic embedding vector of classes within the network to
produce prediction scores for both seen and unseen classes.
We propose a novel loss formulation that incorporates max-
margin learning (Zhang and Saligrama 2016; Zhang et al.
2016) and a semantic clustering loss based on the class-
scores of different meta-classes. While the max-margin loss
attempts to separate individual classes, the semantic clus-
tering loss tries to reduce the noise in semantic vectors by
positioning similar classes together and dissimilar classes far
apart. Notably, our proposed formulation assumes predefined
unseen classes when exploring the semantic relationships
during the model learning phase. This assumption is con-
sistent with recent efforts in the literature, which adopt class
semantics to solve the domain shift problem in ZSL (Deng
et al. 2014; Fu et al. 2017), and does not constitute a transduc-
tive setting (Deutsch et al. 2017; Fu et al. 2015; Kodirov et al.
2015). Based on the premise that, in practice, unseen class
semantics are sometimes unknown during training for zero-
shot scenarios, we also propose a variant of our approach that
can be trained without predefined unseen classes. Finally,
we propose a comparison method for ZSD by extending
a popular zero-shot recognition framework named ConSE
(Morgado and Vasconcelos 2017), using Faster-RCNN (Ren
et al. 2017). In summary, this paper reports the following
advances:

– We introduce a new problem setting for zero-shot learn-
ing, which aims to jointly recognize and localize novel
objects in complex scenes.

– We present a new experimental protocol and design
a novel baseline solution extended from conventional
recognition to the detection task.

– Wepropose an end-to-end trainable deep architecture that
simultaneously considers both visual and semantic infor-
mation.

– We design a novel loss function that achieves synergistic
effects for max-margin class separation and seman-
tic clustering, based on meta-classes. Additionally, our
approach can automatically tune noisy semantic embed-
dings.

A preliminary version of this work appeared in Rahman
et al. (2019). The current version extends (Rahman et al.
2019) in the following aspects: (a) a comprehensive descrip-
tion of the experimental protocol for the ImageNet dataset is
provided in Sect. 5.1, (b) new ZSD experiments on both the
small-scale CUB dataset and large-scale MS-COCO dataset
are reported in Sect. 5, (c) a description of closely related
works and comparison with our approach is included in
Sect. 2, and (d) an elaborate qualitative result analysis is
performed in Sect. 5.8.

2 RelatedWork

End-to-EndObject Detection:Though object detection has
been extensively studied in the literature, we can only find
a few end-to-end learning pipelines capable of simultaneous
object localization and classification. Popular examples of
such approaches are Faster R-CNN (Ren et al. 2017), R-FCN
(Dai et al. 2016), SSD (Liu et al. 2016) and YOLO (Red-
mon and Farhadi 2017). The contribution of these methods
pertains to object localization. Methods like Faster R-CNN
(Ren et al. 2017), R-FCN (Dai et al. 2016) are based on
two-stage training, where a Region Proposal Network (RPN)
first provides bounding box proposals for possible objects
and then the network performs box-classification and box-
regression in the later layers. In contrast, methods like SSD
(Liu et al. 2016) and YOLO (Redmon and Farhadi 2017)
draw bounding boxes and classify them in a single step.
Unlike RPN, these methods predict the bounding box off-
set of pre-defined anchors rather than the box co-ordinates
themselves. The later methods are generally faster than the
previous ones. However, RPN based methods are more accu-
rate. All these object detectors are only capable of detecting
objects whose training samples were available. In our current
work, we focus on zero-shot object detection, which aims at
detecting previously unseen object classes during inference.
We build our model on top of a two-stage object detector
(Faster RCNN), chosen due to its excellent performance for
the regular object detection task.

SemanticEmbedding:Semantic information about object
classes is critical for any zero-shot learning problem, such as
recognition or tagging. This semantic information works as
a bridge between seen and unseen classes. A commonway to
encode the semantic information of a class is by using a vec-
tor represented in the ‘semantic embedding space’. Visually
similar classes reside in close proximity in this space. The
semantic vector of any class can be generated either manu-
ally or automatically. Manually generated semantic vectors
are often called ‘attributes’ (Wah et al. 2011; Lampert et al.
2014). Although attributes can describe a class with less
noise (than other kinds of embeddings), they require con-
siderable human effort to acquire manual annotations. As a
workaround, automatic semantic embeddings can be gener-
ated from a large corpus of unannotated text (e.g.,Wikipedia,
news articles etc.) or the hierarchical relationship of classes
in WordNet corpus (Miller 1995). Some popular examples
of such semantic embeddings are word2vec (Mikolov et al.
2013), GloVe (Pennington et al. 2014), and hierarchies (Xian
et al. 2016). Since these embeddings are generated in an unsu-
pervised manner, they are relatively noisy but provide more
flexibility and scalability compared to manually acquired
attributes.

Zero-ShotLearning:Humans can recognize a newobject
by relating it to known concepts, without need for prior
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visual experience. Simulating this behavior in an automated
machine vision system is called Zero-shot learning (ZSL).
In recent years, numerous methods for ZSL have been pro-
posed. A common thread in all ZSL strategies is that they
relate seen and unseen classes through semantic embeddings.
Based on how this relation is established, ZSL strategies can
be categorized into four types.

(a) The first type of methods attempt to predict class-
specific semantic embeddings (Palatucci et al. 2009;
Wang and Ji 2013; Lampert et al. 2014; Yu et al. 2013).
An object is classified into an unseen class based on
the similarity between the predicted and ground-truth
semantics of unseen classes. This approach does not
work consistently if the semantic vectors are noisy
(Jayaraman and Grauman 2014). This leads such meth-
ods to use manually obtained attributes as the semantic
embedding.

(b) The second kind of methods learn a linear (Akata et al.
2016, 2015; Romera-Paredes and Torr 2015) or non-
linear (Xian et al. 2016; Socher et al. 2013) compatibility
function to relate the seen image feature and correspond-
ing semantic vector. This compatibility function yields a
high score if the visual feature and semantic vector come
from the same class and vice versa. Visual features with
the highest compatibility score are classified as unseen.
Such methods work consistently across a wide variety of
semantic embedding vectors.

(c) The third kind of methods determine unseen classes
by mixing seen visual features and semantic embed-
dings (Morgado and Vasconcelos 2017; Changpinyo
et al. 2016; Zhang and Saligrama 2015). For this pur-
pose, some methods perform per class learning and later
combine individual class outputs to make unseen class
predictions. The main difference from (b) is that they
do not use class semantics during training with seen
classes. After the seen training, they relate seen and
unseen through mixing class semantics. While most of
the ZSL approaches convert visual features to semantic
space, (Kodirov et al. 2017; Zhang et al. 2017) mapped
semantic vectors to the visual domain to address the hub-
ness problem during prediction (Shigeto et al. 2015).

(d) The fourth kind of approaches use synthesized fea-
tures to improve ZSL and GZSL performance (Xian
et al. 2018b; Schonfeld et al. 2019; Xian et al. 2019).
The synthesized features are generated using a Gener-
ative Adversarial Network (GAN), a Variational Auto-
encoder (VAE) or their combination. After synthesizing
features of unseen classes, they train unseen classes in
a similar way as supervised learning. In recent years,
these generative approaches have achieved state-of-the-
art ZSL performance. However, they are dependent on
attribute semantics that require hard manual labeling.

Moreover, adding a new unseen class can be costly
because it requires retraining based on new synthesized
unseen data.

To minimize the difficulty level of the ZSL problem,
researchers have investigated transductive setting (Ye and
Guo 2017; Xu et al. 2017; Li et al. 2017), domain adaptation
(Deutsch et al. 2017; Kodirov et al. 2015) and class-attribute
association (Al-Halah et al. 2016; Demirel et al. 2017) tech-
niques. Usually, ZSL methods are evaluated on a restricted
case of the recognition problem where test data only contain
unseen images. Few recent studies performed experiments on
generalized version of ZSL (Xu et al. 2017; Xian et al. 2018a;
Li et al. 2017). They found that the established ZSL methods
perform poorly in such settings. Still, all these methods are
restricted to the recognition task. In this paper, we extend
recognition problem to a more complex detection problem,
where both recognition and localization are required.

Zero-Shot Image Tagging: Rather than assigning one
unseen label to each image, as done in the recognition task,
zero-shot tagging allows multiple unseen tags be allocated
to an image and/or the array of unseen tags to be ranked.
Very few papers have addressed the zero-shot version of this
problem (Li et al. 2015; Fu et al. 2015; Zhang and Saligrama
2016). Li et al. (2015) applied the ZSL approach proposed
in (Morgado and Vasconcelos 2017) to image tagging. They
argued that semantic embeddings of all possible tagsmay not
be available, and therefore, proposed a hierarchical seman-
tic embedding method for the unavailable tags based on
its ancestor classes in WordNet hierarchy. (Fu et al. 2015)
considered the power set of fixed unseen tags as the label
set to perform transductive multi-label learning. Recently,
(Zhang and Saligrama 2016) proposed a fast zero-shot tag-
ging approach that can rank both seen and arbitrary unseen
tags during the testing stage. All previous attempts are not
end-to-end because they preform training on top of pre-
trainedCNNfeatures. In this paper,wepropose an end-to-end
method for zero-shot detection and also report performance
on relatively simpler zero-shot object tagging task which
does not require precise localization.

Object-LevelAttributeReasoning:Object level attribute
reasoning has been studied under two themes in the literature.
The first theme advocates the use of object-level semantic
representations in a traditional ZSL setting. Li et al. (2014)
proposed to use local attributes and employed these shared
characteristics to obtain zero-shot classification and segmen-
tation. However, they dealt with fine-grained categorization
task, where both seen and unseen objects have similar shapes
(and segmentation masks), there is a single dominant cate-
gory in each image and work with only supervised attributes.
Another approach aiming at zero-shot segmentation is to
learn a shape space shared with the novel objects. This tech-
nique, however, can only segment new object shapes that are
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very similar to the training set (Jetley et al. 2016). Along the
second theme, some efforts havemore recently been reported
for object localization and tracking using natural language
descriptions (Hu et al. 2016; Li et al. 2017). Different to our
problem, they assume an accurate semantic description of the
object, use supervised examples of objects during training,
and therefore do not tackle the zero-shot detection problem.

Recent Efforts on Zero-Shot Object Detection: In par-
allel to the preliminary version of this work (Rahman et al.
2019), several concurrent but independent efforts on ZSD
have been reported (Bansal et al. 2018; Demirel et al. 2018;
Zhu et al. 2018). Bansal et al. (2018) presents a background
aware approach for ZSD. It works on pre-computed object
proposals from Edgebox method. The main contribution
is to treat the background class such that the model does
not classifies an unseen object as background. Because of
the dependence of offline object proposals, this method is
not end-to-end trainable. Demirel et al. (2018) proposed a
YOLO detector based method for ZSD. This method mainly
focuses on how to score an unseen region using unseen word
vectors and prediction scores. However, their experimental
evaluations are performed on relatively small-scale datasets,
Fashion MNIST and Pascal VOC. Zhu et al. (2018) also pro-
posed a YOLO based architecture for ZSD. But, their work
only localizes unseen objects without categorizing it to a
particular unseen class. Recently, a newpolarity loss for zero-
shot detection has been proposed in Rahman et al. (2018),
Rahman et al. (2020a) and achieved significant performance
boost on MSCOCO-2014 and Pascal VOC-07 datasets. Fur-
ther, Rahman et al. (2019) proposed a transductive learning
framework for ZSD. However, none of the works mentioned
above deal with the challenging ImageNet dataset. Apart
from proposing an end-to-end model for ZSD, we provide
a new protocol along with seen/unseen split to test ZSD on
ImageNet data. Moreover, we test our method on other large-
scale datasets such as MSCOCO-2014 (Lin et al. 2014).

3 ProblemDescription

For a given set of images from seen object categories, ZSD
aims to recognize and localize previously unseen object cate-
gories. In this section, we formally describe the ZSDproblem
and its associated challenges. We also introduce variants of
the detection task, which are natural extensions of the orig-
inal problem. First, we describe the notations used in the
following discussion.

3.1 Preliminaries

Consider a set of ‘seen’ classes denoted by S = {1, . . . ,S},
whose examples are available during the training stage and
S represents their total number. There exists another set of

‘unseen’ classes U = {S + 1, . . . ,S + U}, whose instances
are only available during the test phase. We denote the set of
all object classes by C = S ∪U , such that C = S+U denote
the cardinality of the label space.

We define a set of meta (or super) classes by grouping
similar object classes into a singlemeta category.Thesemeta-
classes are denoted by M = {zm : m ∈ [1,M]}, where M
denote the total number of meta-classes and zm = {k ∈
C s.t ., g(k) = m}. Here, g(k) is a mapping function which
maps each class k to its corresponding meta-class zg(k). Note
that the meta-classes are mutually exclusive i.e., ∩M

m=1zm =
φ and ∪M

m=1zm = C.
The set of all training images is denoted by X s , which

contains examples of all seen object classes. The set of all
test images containing samples of unseen object classes is
denoted byX u . Each test image x ∈ X u contains at least one
instance of an unseen class. Notably, no unseen class object
is present in X s , but X u may contain seen objects.

We define a d dimensional word vector vc (word2vec or
GloVe) for every class c ∈ C. The ground-truth label for an i th
bounding box is denoted by yi . Since the object detection task
also involves identifying the background class for negative
object proposals, we introduce the extended label sets: S ′ =
S ∪ ybg , C′ = C ∪ ybg and M′ = M ∪ ybg , where ybg =
{C + 1} is a singleton set denoting the background label.

3.2 Task Definitions

Given the observed space of images X = X s ∪ X u and the
output label space C′, our goal is to learn a mapping function
f : X �→ C′ that gives the minimum regularized empirical
risk (R̂), as follows:

argmin
Θ

R̂( f (x;Θ)) + Ω(Θ), (1)

where, x ∈ X s during training, Θ denotes the set of param-
eters and Ω(Θ) denotes the regularization on the learned
weights. The mapping function has the following form:

f (x;Θ) = argmax
y∈C

max
b∈B(x)

F(x, y, b;Θ), (2)

where F(·) is a compatibility function, B(x) is the set of
all bounding box proposals in a given image x. Intuitively,
Eq. 2 finds the best scoring bounding boxes based on an
objectness measure and assigns them the maximum scoring
object category. Next, we define the zero-shot learning tasks
which go beyond a single unseen category recognition in
images. Notably, the training is framed as the challenging
ZSD problem, however the remaining task descriptions are
used during evaluation to relax the original problem:
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T1 Zero-shot detection (ZSD): Given a test image x ∈ X u ,
the goal is to categorize and localize each instance of an
unseen object class u ∈ U .

T2 Zero-shot meta-class detection (ZSMD): Given a test
image x ∈ X u , the goal is to localize each instance of an
unseen object class u ∈ U and categorize it into one of
the super-classes m ∈ M.

T3 Zero-shot tagging (ZST): To recognize one or more
unseen classes in a test image x ∈ X u , without iden-
tifying their location.

T4 Zero-shot meta-class tagging (ZSMT): To recognize one
or more meta-classes in a test image x ∈ X u , without
identifying their location.

Among the above mentioned tasks, the ZSD is the most
difficult problem and difficulty level decreases aswe go down
the list. The goal of the later tasks is to distill the main chal-
lenges in ZSD by investigating two ways of relaxing the
original problem: (a) Reducing the unseen object classes by
clustering similar unseen classes into a single super-class (T2
and T4). (b) Removing the localization constraint. To this
end, we investigate the zero-shot tagging problem, where the
goal is only to recognize all object categories in an image
(T3 and T4).

Current state-of-the-art methods for zero-shot learning
only deal with recognition/tagging. The proposed problem
settings add the missing detection task, which indirectly
encapsulates traditional recognition and tagging tasks.

4 Zero-Shot Object Detection

Our proposed model uses Faster-RCNN (Ren et al. 2017) as
the backbone architecture, due to its superior performance
among competitive end-to-end object detection models (Dai
et al. 2016; Liu et al. 2016; Redmon and Farhadi 2017). We
first provide an overview of our proposed model architecture
and then discuss network learning. Finally, we extend a pop-
ular ZSL approach to the detection problem, against which
we compare our performance in the experiments.

4.1 Model Architecture

The overall architecture is illustrated in Fig 2. It has two
main components enclosed in boxes: the first provides object-
level feature descriptions and the second integrates visual
information with the semantic embeddings to perform zero-
shot detection. We explain these in detail next.

Object-level Feature Encoding: For an input image x, a deep
network (VGG/ ResNet) is used to obtain the intermedi-
ate convolutional activations. These activations are treated
as feature maps, which are forwarded to a Region Proposal

Network (RPN). The RPN generates a set of candidate object
proposals by automatically ranking the anchor boxes at each
sliding window location. The high-scoring proposals can be
of different sizes, which are mapped to fixed sized represen-
tation using a RoI pooling layer that operates on the initial
feature maps and the proposals generated by the RPN. The
resulting object level features for each candidate are denoted
as ‘f’. Note that the RPN training does not use object class
information. It only predicts an objectness score and bound-
ing box parameters to each anchor. As RPN learns what
qualifies an object, a RPN trained on seen objects can gen-
erate proposals for unseen objects also. We validate this
argument through experiments reported in Sect. 5.2. In the
second block of our architecture, the object-specific feature
representations are used alongside the semantic embeddings
to learn useful representations for both the seen and unseen
object-categories.

Integrating Visual and Semantic Contexts: The object-level
feature f is forwarded to two branches in the second module.
The top branch is trained to predict the object category for
each candidate box. Note that this can assign a class c ∈ C′,
which can be a seen, unseen or background category. The
branch consists of two main sub-networks, which are key to
learning the semantic relationships between seen and unseen
object classes.

The first component is the ‘Semantic Alignment Network’
(SAN), which consist of an adjustable FC layer, whose
parameters are denoted as W1 ∈ R

d×d , that projects the
input visual feature vectors to a semantic spacewith d dimen-
sions. The resulting feature maps are then projected onto the
fixed semantic embeddings, denoted by W2 ∈ R

d×(C+1),
which are obtained in an unsupervised manner by text min-
ing (e.g., Word2vec and GloVe embeddings). Note that, here
we consider both seen and unseen semantic vectors which
require unseen classes to be predefined. This consideration
is inline with a very recent effort (Fu et al. 2017), which
adopted this setting to explore the cluster manifold structure
of the semantic embedding space and address the domain
shift issue. Given a feature representation input (f t ) to SAN
in the top branch the overall operation can be represented as:

o = (W1W2)
T f t . (3)

Here, o is the output prediction score. The W2 is formed by
stacking semantic vectors for all classes, including the back-
ground class. For background class, we use the mean word
vectors vb = 1

C

∑C
c=1 vc as its embedding inW2. The reason

for using such an embedding for the background class is two-
fold. (1) Since a background box can contain parts of objects
(with IoU < 0.5), an average embedding adequately models
the semantics that could appear in the background category.
(2) It keeps the relationship between word vectors consistent
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Fig. 2 Network architecture—Left: Image level feature maps are used to propose candidate object boxes and their corresponding features. Right:
The features are used for classification and localization of new classes by utilizing their semantic concepts

which is not possible otherwise. To test this hypothesis, we
replace the background embedding with an all one vector,
that results in a very low performance mark (3.2 mAP) for
ZSD.

The projection defined byW1 is tunable whileW2 defines
a fixed embedding. Notably, a non-linear activation function
is not applied between the tunable and fixed semantic embed-
dings in the SAN. Therefore, the two projections can be
understood as a single learnable projection on to the seman-
tic embeddings of object classes. This helps in automatically
updating the semantic embeddings to make them compatible
with the visual feature domain. It is highly valuable because
the original semantic embeddings are often noisy due to
the ambiguous nature of closely related semantic concepts
and the unsupervised procedure used for their calculation. In
Fig. 3, we visualize modified embedding space when differ-
ent loss functions are applied during training.

The bottom branch enables bounding box regression to
add suitable offsets to align the proposals with the ground-
truths for precise predictions of object locations. This branch
is set up similar to Faster-RCNN (Ren et al. 2017).

4.2 Training and Inference

We follow a two step training approach to learn the model
parameters. The first part involves training the backbone
Faster-RCNN for only seen classes using the training setX s .
This training involves initializing weights of shared layers
with a pre-trained Vgg/ResNet model, followed by learning
the RPN, classification and detection networks. In the sec-
ond step, we modify the Faster-RCNN model by replacing

the last layer of Faster-RCNN classification branch with the
proposed semantic alignment network and an updated loss
function (see Fig. 2). While rest of the network weights are
used from the first step, the weightsW1 are randomly initial-
ized and the W2 are fixed to semantic vectors of the object
classes and not updated during training.

While training in second step, we keep the shared layers
trainable but fix the layers specific to RPN since the object
proposals requirements are not changed from the previous
step. The same seen class imagesX s are again used for train-
ing. For each given image,weobtain the output ofRPNwhich
consists of a total of ‘R’ ROIs belonging to both positive and
negative object proposals.

Each proposal has a corresponding ground-truth label
given by yi ∈ S ′. Positive proposals belong to any of the seen
class S and negative proposals contain only background. In
our implementation, we use an equal number of positive and
negative proposals. Now, when object proposals are passed
through ROI-Pooling and subsequent dense layers, a fea-
ture representation fi is calculated for each ROI. This feature
is forwarded to two branches, the classification branch and
regression branch. The overall loss is the summation of the
respective losses in these two branches, i.e., classification
loss and bounding box regression loss.

L(oi , bi , yi , b∗
i ) = argmin

Θ

1

T

∑

i

(
Lcls(oi , yi ) + Lreg(bi , b

∗
i )

)
,

where Θ denotes the parameters of the network, oi is the
classification branch output, T = N × R represents the total
number of ROIs in the training set with N images. bi and b∗

i
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Fig. 3 The 2D tSNE embedding ofmodifiedword vectorsW1W2 using
only max-margin loss, Lmm (left) and with clustering loss, Lmm + Lmc
(right). Semantically similar classes are embeddedmore closely in clus-
ter based loss

are parameterized coordinates of predicted and ground-truth
bounding boxes respectively and yi represents the true class
label of the i th object proposal.

Classification Loss: This loss deals with both seen and
unseen classes. It comprises of a max-margin loss (Lmm) and
a meta-class clustering loss (Lmc):

Lcls(oi , yi ) = λLmm(oi , yi ) + (1 − λ)Lmc(oi , g(yi )), (4)

where, hyper-parameter λ controls the trade-off between two
losses. We fix it by performing traditionally seen object
detection task. We have used the validation set of ILSVRC
detection dataset for this. We define,

Lmm(oi , yi ) = 1

|C′ \ yi |
∑

c∈C′\yi
log

(
1 + exp(oc − oyi )

)
,

Lmc(oi , g(yi )) = 1

|M′′||Z|
∑

c∈M′′

∑

j∈Z
log

(
1 + exp(oc − o j )

)
,

where, sets M′′ = {M′ \ zg(yi )} and Z = {zg(yi )}, ok rep-
resent the prediction response of class k ∈ S. Lmm tries to
separate the prediction response of the true class from rest
of the classes. In contrast, Lmc pulls the classes belonging to
different meta-classes further apart and (implicitly) tries to
cluster together the members of each super-class. The benefit
of using super-classes in our approach is two-fold. First, our
Lmc loss utilizes the super-class definition to cluster similar
classes together. This helps in identifying visual instances of
unseen classes by relating themwith the similar seen classes.
In this way, the super-class definition is useful specifically for
ZSD, where semantic relationships are very helpful to make
sense of the unseen classes. Second, the super-class defini-
tion helps us define additional auxiliary tasks such as ZSMT
and ZSMD that can shed light on which particular aspects of
the ZSD problem are more challenging (i.e., localization or
recognition).

We illustrate the effect of clustering loss on the learned
embeddings in Fig. 3. The use of Lmc enables us to clus-
ter semantically similar classes together which results in

improved embeddings in the semantic space. For example,
all animal-related meta-classes are close together, whereas
food and vehicle are far apart. Such a clear separation in
semantic space helps in obtaining a better ZSD performance.
Moreover, meta-class based clustering loss does not harm
fine-grained detection because the hyper-parameter λ is used
to put more emphasis on the max-margin loss (Lmm) as com-
pared to the clustering part (Lmc) of the overall loss (Lcls).
Still, the clustering loss provides enough guidance to the
noisy semantic embeddings (e.g., unsupervised w2v/glove)
such that similar classes are clustered together as illustrated
in Fig. 3. Note that w2v/glove try to place similar words
nearby with respect to millions of text corpus, it is therefore
not fine-tuned for just 200 class recognition setting.

Regression Loss: This part of the loss fine-tunes the
bounding box for each seen class ROI. For each fi , we get
4 × S values representing 4 parameterized co-ordinates of
the bounding box of each object instance. The regression
loss is calculated based on these co-ordinates and parameter-
ized ground truth co-ordinates. During training, no bounding
box prediction is done for background and unseen classes
due to unavailability of visual examples. As an alternate
approach, we approximate the bounding box for an unseen
object through the box proposal for a closely related seen
object that achieves maximum response. This is a reasonable
approximation because visual features of unseen classes are
related to that of similar seen classes.

Prediction:We normalize each output prediction value of
classification branch using ôc = oc‖vc‖2‖f t‖2 . It basically cal-
culates the cosine similarity between modified word vectors
and image features. This normalization maps the prediction
values within 0 to 1 range. We classify an object proposal as
background if maximum responds among ôc where c ∈ C′
belongs to ybg . Otherwise, we detect an object proposal as
unseen object if its maximum prediction response among ôu
where u ∈ U is above a threshold α.

yu = argmax
u∈U

ôu s.t ., ôu > α. (5)

The other detection branch finds bi which is the set of param-
eterized co-ordinates of bounding boxes for S seen classes.
Among them,wechoose aboundingboxcorresponding to the
class having the maximum prediction response in ôs where
s ∈ S for the classified unseen class yu . For the tagging
tasks, we simply use the mapping function g(.) to assign a
meta-class for any unseen label.

4.3 ZSDWithout Pre-defined Unseen

While applying clustering loss in Sect. 4.2, the meta-class
assignment adds high-level supervision in the semantic
space. While doing this assignment, we consider both seen
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and unseen classes. Similarly, the max-margin loss consid-
ers the set C′ that has both seen and unseen classes. This
problem setting helps to identify the clustering structure of
the semantic embeddings to address domain adaptation for
zero-shot detection. However, in several practical scenarios,
unseen classes may not be known during training. Here, we
report a simplified variant of our approach to train the pro-
posed network without pre-defined unseen classes.

For this problem setting, we use only seen+bg word
vectors (instead of seen+unseen+bg vectors) as the fixed
embedding W2 ∈ R

d×(S+1) to train the whole framework
with only the max-margin loss, L ′

mm , defined as follows:

L ′
mm(oi , yi ) = 1

|S ′ \ yi |
∑

c∈S ′\yi
log

(
1 + exp(oc − oyi )

)
.

Since the output classification layer cannot make predictions
for unseen classes, we apply a procedure similar to ConSE
during the testing phase (Morgado and Vasconcelos 2017).
Here, the choice of (Morgado andVasconcelos 2017) ismade
due to twomain reasons: (a) In contrast to other ZSLmethods
which train separate models for each class (Changpinyo et al.
2016;Rahman et al. 2018),ConSEcanwork on the prediction
score of a single model. (b) It is straight-forward to extend
a single network to ZSD using ConSE, since (Morgado and
Vasconcelos 2017) uses semantic embeddings only during
the test phase.

Suppose, for an object proposal, vector o ∈ R
S+1 contains

final probability values of only seen classes and background.
As described earlier, we ignore an object proposal if the back-
ground gets highest score. For other cases, we sort the vector
o in descending order to compute a list of indices l and the
sorted list ô:

ô, l = sort(o) s.t ., o j = ôl j . (6)

Then, top K score values (s.t., K ≤ S) from ô are combined
with their corresponding word vectors using the equation:
ei = ∑K

k=1 ôkvlk . We consider ei to be a semantic space
projection of an object proposal that is a combination of word
vectors weighted by top K seen class probabilities. The final
prediction is made by finding the maximum cosine similarity
among ei and all unseen word vectors,

yu = argmax
u∈U

cos(ei , vu).

In this paper, we use K = 10 as proposed in Morgado and
Vasconcelos (2017). For bounding box detection, we choose
the box for which corresponding seen class gets maximum
score.

5 Experiments

5.1 Dataset and Experiment Protocol

Dataset:Weevaluate our approach on the standard ILSVRC-
2017 detection dataset (Russakovsky et al. 2015). This
dataset contains 200 object categories. For training, it
includes 456,567 images and 478,807 bounding box annota-
tions around object instances. The validation dataset contains
20,121 images fully annotated with the 200 object categories
which include 55,502 object instances. A category hierarchy
has been defined in Russakovsky et al. (2015), where some
objects have multiple parents. Since, we also evaluate our
approach on meta-class detection and tagging, we define a
single parent for each category.

Seen/Unseen Split:Wepropose a challengingZSDproto-
col (seen/unseen splits) for ILSVRC-2017 detection dataset.
Among 200 object categories, we randomly select 23 cate-
gories as unseen and rest of the 177 categories are considered
as seen.This split is designed to follow the followingpractical
considerations: (a) unseen classes are rare, (b) test categories
should be diverse, (c) the unseen classes should be semanti-
cally similarwith at least some of the seen classes. The details
on how we meet these considerations are provided below.

Meta-class Assignment: The classes of ILSVRC detec-
tion dataset maintain a defined hierarchy (Russakovsky
et al. 2015). However, this hierarchy does not follow a tree
structure. In this paper, we choose a total of M = 14 meta-
classes (including person), in which the 200 object classes
are divided. Table 1 describes meta-class assignment of all
200 classes. This assignment mostly follows the hierarchy
of question prescribed in the original paper (Russakovsky
et al. 2015). Few notable exceptions are (1) the classes of
first-aid/medical items, cosmetics, carpentry items, school
supplies and bag are grouped as indoor accessory, (2) liq-
uid container related classes are merged with kitchen items,
(3) flower pot is considered as furniture similar to MicroSoft
COCOsuper-categories (Lin et al. 2014), (4)All livingorgan-
isms (other than people) related classes are grouped into
three different meta-class categories based on their similar-
ity in word vector embedding space: invertebrate, mammal
and non-mammal animal. Although one can argue that all
invertebrate are non-mammal, this is just an assignment def-
inition we apply in this paper to obtain a uniform distribution
of images across super-classes.

Train/Test Set: A zero-shot setting does not allow any
visual example of an unseen class during training. Therefore,
we customize the training set of ILSVRC such that images
containing any unseen instance are removed. This results in
a total of 315,731 training images with 449,469 annotated
bounding boxes. For testing, the traditional zero-shot recog-
nition setting is used which considers only unseen classes.
As the test set annotations are not available to us, we cannot
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Table 1 Assigned meta-class to each of the 200 object categories

ID Metaclass Categories

1 Indoor Accessory (25) Axe, backpack, band aid, binder,
chain saw, cream, crutch,
face-powder, hairspray, hammer,
lipstick, nail, neck-brace,
pencilbox, pencilsharpener,
perfume, plastic-bag, power-drill,
purse, rubber-eraser, ruler,
screwdriver, stethoscope,
stretcher, syringe

2 Musical (17) Accordion, banjo, cello, chime,
drum, flute, french-horn, guitar,
harmonica, harp, maraca, oboe,
piano, saxophone, trombone,
trumpet, violin

3 Food (21) Apple, artichoke, bagel, banana,
bell-pepper, burrito, cucumber,
fig, guacamole, hamburger,
head-cabbage, hotdog, lemon,
mushroom, orange, pineapple,
pizza, pomegranate, popsicle,
pretzel, strawberry

4 Electronics (16) Computer-keyboard,
computer-mouse, digital-clock,
electric-fan, hair-dryer, iPod,
lamp, laptop, microphone,
printer, remote-control,
tape-player, traffic-light, tv or
monitor, vacuum, washer

5 Appliance (7) Coffee-maker, dishwasher,
microwave, refrigerator, stove,
toaster, waffle-iron

6 Kitchen item(17) Beaker, bowl, can-opener,
cocktail-shaker, corkscrew, cup
or mug, frying-pan, ladle,
milk-can, pitcher, plate-rack,
salt or pepper shaker,
soap-dispenser, spatula strainer,
water-bottle, wine-bottle

7 Furniture (8) Baby-bed, bench, bookshelf,chair,
filing-cabinet, flower-pot, sofa,
table

8 Clothing (11) Bathing-cap, bow-tie, brassiere,
diaper, hat with a wide brim,
helmet, maillot, miniskirt,
sunglasses, swimming-trunks,
tie

9 Invertebrate animal (14) Ant, bee, butterfly, centipede,
dragonfly, goldfish, isopod,
jellyfish, ladybug, lobster,
scorpion, snail, starfish, tick

10 Mammal animal(28) Antelope, armadillo, bear, camel,
cattle, dog, domestic-cat,
elephant, fox, giant-panda,
hamster, hippopotamus, horse,
koala-bear, lion, monkey, otter,
porcupine, rabbit, red-panda,
seal, sheep, skunk, squirrel,
swine, tiger, whale, zebra

Table 1 continued

ID Metaclass Categories

11 Non-mammal animal(6) Bird, frog, lizard, ray, snake, turtle

12 Vehicle (12) Airplane, bicycle, bus, car, cart,
golfcart, motorcycle,
snowmobile, snowplow, train,
unicycle, watercraft

13 Sports (17) Balance-beam, baseball,
basketball, bow, croquet-ball,
dumbbell, golf-ball,
horizontal-bar, ping-pong-ball,
puck, punching-bag, racket,
rugby-ball, ski, soccer-ball,
tennis-ball, volleyball

14 Person (1) Person

The unseen classes are presented as bold

separate unseen classes for evaluation. Therefore, our test
set is composed of the left out data from ILSVRC training
dataset plus validation images having at least one unseen
bounding box. The resulting test set has 19,008 images and
19,931 bounding boxes.

Since the unseen classes are rare in real life settings and
therefore their images are hard to collect, we assume that
the training set only contains frequent classes. For ILSVRC
detection dataset, number of instances per class follows a
long-tail distribution (Fig. 5). For each of our defined meta-
class categories, we first plot the instance distribution of
the child classes like Fig. 4. Then, we randomly select one
or two classes (depending on the number of child classes)
from the rare second half of the distribution. We choose two
unseen classes from the meta-classes which have relatively
large (9 or more) number of child classes. In contrast, we
choose one class as unseen for the meta-classes having less
number of child classes. The only exception is that we do
not choose ‘Person’ meta-class as unseen because it has no
similar child class. This random selection procedure avoids
biasness, ensures diversity (due to selection from all meta-
classes), semantic similarity with seen (due to presence of
multiple seen classes in each meta-category) and conforms
to the fact that unseen classes are not the frequent ones.

SemanticEmbedding:Traditionally ZSLmethods report
performance on both supervised attributes and unsuper-
vised word2vec/glove as semantic embeddings. Asmanually
labeled supervised attributes are hard to obtain, only small-
scale datasets with these annotations are available (Farhadi
et al. 2009; Lampert et al. 2009). ILSVRC-2017 detection
dataset used in the current work is quite huge and does not
provide attribute annotations. In this paper, we work on �2
normalized 500 and300dimensional unsupervisedword2vec
(Mikolov et al. 2013) and (Pennington et al. 2014) vector
respectively to describe the classes. These word vectors are
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Fig. 5 Long-tail distribution of imageNet dataset

obtained by training on several billion words fromWikipedia
dump corpus.

Evaluation Metric:We report average precision (AP) of
individual unseen classes andmean average precision (mAP)
for the overall performance of unseen classes.

Implementation Details: Unlike Faster-RCNN, our first
step is trained in one step: after initializing shared layer
with pre-trained weights, RPN and detection network of
Fast-RCNN layers are learned together. Some other settings
includes rescaling shorter size of image as 600 pixels, RPN
stride = 16, three anchor box scale 128, 256 and 512 pixels,
three aspect ratios 1:1, 1:2 and 2:1, non-maximum suppres-
sion (NMS)onproposals class probabilitywith IoU threshold
=0.7. Eachmini-batch is obtained froma single image having

16 positive and 16 negative (background) proposals. Adam
optimizer with learning rate 10−5, β1 = 0.9 and β2 = 0.999
is used in both stages of training. First step is trained over 10
millionmini-batcheswithout any data augmentation, but data
augmentation through repetition of object proposals is used
in second step. During testing, the prediction score threshold
was 0.1 for baseline and Ours (with L ′

mm) and 0.2 for clus-
tering method (Ours with Lcls). We implement our model in
Keras.

Data Augmentation:We visualize the long-tail distribu-
tion of ILSVRC detection classes in Fig. 5. One can find
that only 11 highly frequent classes (out of 200) cover top
50% of the distribution. This distribution creates a signifi-
cant impact on ZSD. To address this problem, in the second
step of training, we augment the less frequent data to make
a balance among similar seen classes for each unseen cate-
gory. From the 10 million mini-batches used at the first stage
of training, we create a set of over 2.8 million mini-batches
for the second stage training. While creating this set, we
make sure that every unseen class gets at least 10K similar
(positive) instances from classes whose meta-class category
is common to that of unseen class. In doing so, for some
unseen classes like ‘ray’, we need to randomly augment data
by repetition because the total instances of classes in the
meta-class ‘non-mammal animal’ are not more than 10K. In
contrast, the unseen class like ‘tiger’ has more than 10K sim-
ilar instances in ‘mammal animal’ meta-class. Therefore, we
randomly pick 10K among those to balance the training set.
After this, the rest of instances of 2.8 million mini-batches
are chosen as the background.
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Comparison Methods: Here, we discuss different vari-
ants of our approach used for comparison in this paper. For
all methods, we use the same inference strategy mentioned
in Sect. 4.2.

– Baseline: We train an original Faster-RCNN (Ren et al.
2017) architecture with all seen data but without any
word vectors. In this approach, we can still get a vector
o ∈ R

S+1 from the classification layer of Faster-RCNN
network that is used in inference. The details are given
in Sect. 4.3.

– Ours (L ′
mm): It uses our proposed architecture with word

vectors as mentioned in Fig. 2. We train the network with
the loss L ′

mm discussed in Sect. 4.3. This approach does
not use unseen word vectors and meta-class annotation.

– Ours (Lcls): This approach is same as Ours (L ′
mm) but

the training uses the loss Lcls discussed in Sect. 4.2. It
takes advantage of unseen word vectors and meta-class
annotation.

5.2 ZSD Performance on ILSVRC-2017 Detection

We use two different architectures i.e., VGG-16 (V)
(Simonyan and Zisserman 2014) and ResNet-50 (R) (He
et al. 2016) as the backbone of the Faster-RCNN during
the first training step. In second step, we experiment with
both Word2vec and GloVe as the semantic embedding vec-
tors used to define W2. Figure 7 illustrates some qualitative
ZSD examples.

Overall Results: Table 2 reports the mAP for all
approaches on four tasks: ZSD, ZSMD, ZST, and ZSMT
across different combinations of network architectures. We
can make following observations: (1) Our cluster based
method outperforms other competitors on all four tasks
because its loss utilizes high-level semantic relationships
from meta-class definitions which are not present in other
methods. (2) Performances get improved from baseline to
Ours (with L ′

mm) across all zero-shot tasks. The reason
is baseline method did not consider word vectors during
the training. Thus, overall detection could not get enough
supervision about the semantic embeddings of classes. In
contrast, L ′

mm loss formulation considersword vectors.Other
than V+w2v case, Lcls achieves a higher mAP than L ′

mm
because Lcls considers both unseen semantics andmeta-class
information during training. Only for V+w2v case, the per-
formance goes down from L ′

mm to Lcls . This trend is likely
due to the relatively higher noise in the w2v compared to
GloVe, since even for R+w2v, the performance gain from
L ′
mm to Lcls is not huge. (3) Performances get improved

from ZST to ZSMT across all methods whereas similar
improvement is not common from ZSD to ZSMD. It’s not
surprising because ZSMD can get some benefit if meta-class
of the predicted class is same as the meta-class of true class. Ta
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If this is violated frequently, we cannot expect significant
performance improvement in ZSMD. Moreover, the small
performance improvement from ZSD to ZSMD in compar-
ison to ZST to ZSMT shows that the correct localization of
unseen classes is a more challenging problem as compared
to their recognition (that is targetted in a multi-class labeling
problem, i.e., ZST and ZSMT). (4) In comparison of tradi-
tional object detection results, ZSD achieved significantly
lower performance. Remarkably, even the state-of-the-art
zero-shot classification approaches perform quite low e.g., a
recent ZSL method (Zhang et al. 2017) reported 11% hit@1
rate on ILSVRC 2010/12. This trend does not undermine to
significance of ZSD, rather highlights the underlying chal-
lenges.

Individual Class Detection: Performances of individual
unseen classes indicate the challenges for ZSD. In Table 3,
we show performances of individual unseen classes across
all tasks with our best (R+w2v) network. We observe that
the unseen classes for which visually similar classes are
present in their meta-classes achieve better detection per-
formance (ZSD mAP 18.6, 22.7, 27.4) than those which do
not have similar classes (ZSD mAP 6.3, 6.5, 4.4) for the all
methods (baseline, our’s with L ′

mm and Lcls). Our proposed
cluster method with loss Lcls outperforms the other versions
significantly for the case when visually similar classes are
present. For the all classes, our cluster method is still the
best (mAP: cluster 16.4 vs. baseline 12.7). However, our’s
with L ′

mm method performs better for when similar classes
are not present (mAP 6.5 vs 4.4) because meta-class anno-
tation could not provide sufficient supervision due to visual
dissimilarity within the same superclass. The performances
for some of the classes in the “Similar classes present” cate-
gory are like the classes in the “Similar classes NOT present
category” because those similar classes may not have suffi-
cient instances in the training dataset to correctly relate seen
to unseen. For example, unseen ‘horizontal bar’ has a small
number of similar instances like seen ‘balance beam’ in the
training dataset compared to unseen ‘train’ and seen ‘bus’.

For the easier tagging tasks (ZST and ZSMT), the cluster
method gets superior performance in most of the cases. This
indicates that one potential reason for the failure cases of our
cluster method for ZSD might be confusions during local-
ization of objects due to ambiguities in visual appearance
of unseen classes. Such ambiguities can happen because of
object size, orientation, image clutter which make an object
different from the description within the word vectors. As
an example, we refer to Fig. 8, where bounding boxes are
incorrectly detected, although the class labels are present in
the image.

Varying λ: The hyperparameter λ controls the weight
between Lmm and Lmc in Lcls . In Fig. 6, we illustrate the
effect of varying λ on four zero-shot tasks for R+w2v and
R+glo. It shows that performances has less variation in the

range of λ = .5 to .9 than λ = .9 to 1. For a larger λ, mAP
starts dropping since the impact of Lmc decreases signifi-
cantly. Low values of λ (i.e., λ < .5) are not reported as
they lead to low emphasis on max-margin loss, resulting in
somewhat lower performance.

More Ablation Studies: In Table 4, we compare our
methods with different experimental settings. (1) No pre-
trained model: This experiment does not use any pre-trained
model. For this case, we use the training set of the pro-
posed ImageNet-ZSD dataset and train with the max-margin
loss L ′

mm . We obtain mAP = 5.4. Note that the training was
done for the same number of iterations as before, i.e., with
10 million mini-batches having one image per mini-batch
(equivalent to 7 days training with a single GPU). One pos-
sible reason of low performance is that the network is not
fully convergedwithin these iterations. However, given a sin-
gle GPU available to us, training a network on ImageNet
DEC from scratch would take much longer which is not
a feasible solution. Therefore, we opted for backbone ini-
tialization with a pre-trained network, which significantly
accelerates the network convergence rate, making it feasible
within the available computational budget. Furthermore, the
ILSVRC detection dataset has less number of images than
ILSVRC recognition and the exclusion of unseen images fur-
ther reduces the data available for training. These two factors
contribute towards a relatively lower performance mark for
the model trained without pre-trained backbone. (2) Exclud-
ing overlapped unseen classes from the pre-trained model: In
a recent study, (Xian et al. 2018a) showed that such overlap
of unseen classes introduces significant bias in the recogni-
tion performance. We empirically evaluate this bias in the
detection case for the first time. We get an mAP of 12.7
(compared to previous mAP of 15.0) after excluding all over-
lapping unseen classes from the backbone pre-training. This
shows that the existence of an overlap in the backbone can
lead to higher results in the detection setting, similar to the
case observed in recognition. This is despite the fact that pre-
trained weights are subsequently updated based on only seen
instances and later based on word vectors with our proposed
loss. However, note that this choice of ImageNet pretrained
backbone was made to be consistent with the competitive
approaches (Bansal et al. 2018; Demirel et al. 2018) and the
exact same setting is used in our baseline for fairness. (3)
Softmax: As the standard choice for classification is to train
the network with a softmax cross-entropy loss, in this experi-
ment, we replace our max-margin loss with softmax loss. We
get an mAP = 13.8 whereas with max-margin loss the mAP
= 15.0. In both cases, unseen classes are not pre-defined dur-
ing training. It tells that our proposed max-margin loss is
better suited in ZSD settings because it can align features
and semantics in a better way. In contrast, softmax loss tries
to align feature and its true semantics but does not maximize
the separation of the true class from rest of the classes. (4) �2
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Fig. 6 Effect of varying λ in different zero-shot tasks for ResNet+w2v
(left) and ResNet+glo (right)

Table 4 (left to right) Performance comparison when no pretrained
model is used, no overlap of unseen with pretrained classes exists,
without using �2 normalization on word vectors, applying softmax
cross-entropy loss and our method

Method No No No Softmax Ours
pre-training overlap �2 norm loss

mAP 5.4 12.7 10.9 13.8 15.0

normalization: The word vector model can generate a vec-
tor of millions of words. But, we only use a small subset of
it, which are the names of detection classes. We apply �2
normalization on this small subset to make zero mean and
unit standard deviation. Using this step, we achieve a bet-
ter performance than without performing this step (10.9 vs.
15.0).

Unseen Proposal Quality: The RPN within our model
generates object proposals that are later used for classifica-
tion. Although the RPN is trained with only seen instances, it
can localize both seen and unseen objects. This is because the
RPN is trained in a class agnostic manner. RPN predicts an
objectness score and bounding box regression parameters for
each anchor box. During this learning process, the RPN goal
is to maximize the overlap between ground-truth bounding
boxes and pre-defined anchor boxes. Since no class informa-
tion is used, RPN learns what qualifies an object in general.
Thus, irrespective of an object class, RPN can provide object
proposals. In this experiment, we attempt to assess the qual-
ity of object proposals found by RPN. Given an image as
input, RPN is set to provide a maximum of 100 proposals.
Then, we apply NMS on those proposals to remove highly
overlapping proposals. For each ground-truth bounding box
in an input image, we calculate IoU with all proposals. If any
of the ground-truth boxes get a suitable match with IoU≥ .5,
we consider that the box is correctly localized. In thisway,we
calculate the percentage of correctly localized ground truth
box for each class. In Table 5, we report this percentage for
177 seen and 23 unseen and all 200 classes. It shows that
RPN is successful in covering a significant amount of seen
and unseen bounding boxes. Here, because of the different

Table 5 The unseen object proposal quality and its comparison with
seen classes

Class Seen (177) Unseen (23) All (200)

accuracy 47.1 49.5 47.3

ratio and frequency of seen and unseen objects, the unseen
class percentage becomes higher than seen.

5.3 ZSD onMS-COCO

Recently, Bansal et al. (2018) proposed a seen/unseen split
on MS-COCO (2014) dataset for evaluating zero-shot object
detection. Out of total 80 classes they used 48 and 17 classes
for seen and unseen respectively. This setting considers
73, 774 images containing seen objects and 6, 608 images
for testing unseen objects. In this paper, we adopt this set-
ting to compare our method with Bansal et al. (2018). In
Table 6, we report both ZSD and GZSD performances on
mAP and Recall@100 based evaluation. For fair compari-
son, our results are based on only Lmm , i.e., using λ = 1 so
that the training do not have access about the unseen knowl-
edge. For ZSD task, withmAP ourmethod beats LAB,DSES
and SB (Bansal et al. 2018) with a large margin (5.05 vs.
0.27, 0.54 and 0.70). However, with Recall@100, we notice
an opposite trend. Although (Bansal et al. 2018) proposed
Recall@100 to evaluateZSD,we argue that thismetric is sub-
optimal because it does not penalize for wrong bounding box
detections by a model2. For GZSD, our method successfully
outperforms DSES (Bansal et al. 2018) in Recall measure.
However, we support ZSD evaluations based on mAP mea-
sure similar to the traditional object detection problem since
it is a more comprehensive evaluation measure.

5.4 ZSD on Fashion-MNIST

Demirel et al. (2018) generate a toy dataset for ZSD based
on Fashion-MNIST (Xiao et al. 2017). This dataset includes
three objects per image to make it suitable for multi-object
detection. Moreover, to increase the task complexity, some
generated images contain randomly cropped objects as clut-
ter. They use 7 seen and 3 unseen classes and 8.3k, 8k and 8k
images for training, validation and testing, respectively. In
Table 7, we adopt their settings to compare our ZSD method
with Demirel et al. (2018). The results show that our pro-
posed approach performs favorably well against (Demirel
et al. 2018). Note that, we do not use pre-defined unseen in
this experiment.

2 Although, we acknowledge that Recall@100 stays an appropriate
measure for large-scale datasets that are not fully labeled (such asVisual
Genome-see Sect. 5.5).
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Table 6 Performance on ZSD
and GZSD tasks on MSCOCO
dataset

Method ZSD GZSD

Seen Unseen HM
mAP/RE mAP/RE mAP/RE mAP/RE

LAB (Bansal et al. 2018) 0.27/20.52 – – –

SB (Bansal et al. 2018) 0.70/24.39 – – –

DSES (Bansal et al. 2018) 0.54/27.19 –/15.02 –/15.32 –/15.17

Ours 5.05/12.27 13.93/20.42 2.55/12.42 4.31/15.45

Bold values highlighted the best reported performance within similar settings

Table 7 Performance on ZSD tasks on Fashion-ZSD Dataset

Method Pullover Dress Ankle-boot Mean

Demirel et al. (2018) 49.0 49.0 95.0 64.9

Ours 70.4 58.6 99.6 76.2

Bold values highlighted the best reported performance within similar
settings

5.5 ZSD onVisual Genome (VG)

InTable 8,we performexperimentswithVGdataset (Krishna
et al. 2017) using Bansal et al. settings (Bansal et al.
2018). Our performance with max-margin loss in terms of
recall@100 is 2.02, whereas (Bansal et al. 2018) reports 5.4
in the same setting. We believe one possible reason of this
performance gap is that our approach considers relatively less
number of bounding box proposals as compared to Bansal
et al. (2018). Since the average number of instances per image
is veryhigh forVGdataset 21.24 (MSCOCOhas7.7), consid-
ering a large number of proposals per image is useful during
training on VG. However, our Faster-RCNN based model
runs in an end-to-end manner on a single GPU, putting a
restriction on the number of proposals (only 32 bounding
boxes per image are considered in our case). In contrast,
Bansal et al. (2018) used an off-line bounding box predictor
(based on Edge-box proposals), which allows them to con-
sider a significantly large number of proposals per image.
Additionally, Bansal et al. (2018) is a background-aware
approach. Insteadof onegeneral backgroundclass, theirLAB
variant considers an extensive number of 1673 classes (those
are neither seen nor unseen) as the background, which may
have been a contributing factor for their approach on the VG
dataset. Therefore, as a future work, one can consider com-
bining such a background-aware approach, together with the
proposed Faster-RCNN model to further improve ZSD per-
formance on VG dataset.

Table 9 ZSD on CUB using λ = 1

mAP Network w2v glo

Baseline R 31.0 26.7

Our (Lcls ) R 33.5 32.3

Baseline V 30.3 27.9

Our (Lcls ) V 30.4 28.4

We refer V = VGG and R = ResNet
Bold values highlighted the best reported performance within similar
settings

5.6 ZSD on CUB

We evaluate the ZSD performance of the baseline and our
proposed method based on a single bounding box per image
provided in CUB dataset (Wah et al. 2011). Table 9 describes
the performance comparison between the baseline and our
basic method. Our overall loss (Lcls) based method outper-
forms the baseline in the different network and semantic
settings. Note that, we do not define any meta-class for the
CUB classes. Therefore, we use λ = 1 for CUB related
experiments.

5.7 Zero Shot Recognition on CUB

Being a detection model, the proposed network can also per-
form traditional Zero Shot Recognition (ZSR). We evaluate
ZSR performance on popular Caltech-UCSD Birds-200-
2011 (CUB) dataset (Wah et al. 2011). This dataset contains
11,788 images from 200 classes and provides a single bound-
ing box per image. Following standard train/test split (Xian
et al. 2018a),weuse 150 seen and50unseen classes for exper-
iments. For semantics embedding, we use 400-d word2vec
(w2v) andGloVe (glo) vector (Xian et al. 2016).Note that,we
do not use per image part annotation (like (Akata et al. 2016))

Table 8 Performance on ZSD task on Visual Genome dataset

Method SB (Bansal et al. 2018) DSES (Bansal et al. 2018) LAB (Bansal et al. 2018) Ours

Recall 4.09 4.75 5.40 2.02

Bold values highlighted the best reported performance within similar settings
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Table 10 Zero shot recognition
on CUB using λ = 1 because no
meta-class assignment is done
here

Top1 accuracy Network w2v glo

Akata’16 (Akata et al. 2016) V 33.90 –

DMaP-I’17 (Li et al. 2017) G+V 26.38 30.34

SCoRe’17 (Morgado and Vasconcelos 2017) G 31.51 –

Akata’15 (Akata et al. 2015) G 28.40 24.20

LATEM’16 (Xian et al. 2016) G 31.80 32.50

DMaP-I’17 (Li et al. 2017) G 26.28 23.69

Ours R 36.77 36.82

For fairness, we only compared our result with the inductive setting of other methods without per image part
annotation and description. We refer V = VGG, R = ResNet, G = GoogLeNet
Bold values highlighted the best reported performance within similar settings

Fig. 7 Selected examples of ZSD of our cluster (λ = .6) method with R+w2v, using the prediction score threshold = 0.3. The numbers represents
the prediction scores in percent. Images are from ILSVRC-2017 detection dataset

and descriptions (like (Zhang et al. 2017)) to enrich seman-
tic embedding. For a given test image, our network predicts
unseen class bounding boxes.We pick only one label with the
highest prediction score per image. In this way, we report the
meanTop1 accuracy of all unseen classes inTable 10.Wefind
our proposed solution achieves a significant improvement in
performance compared to state-of-the-art methods.

5.8 Qualitative Results

We provide examples of ZSD in Fig. 7 using ILSVRC-
2017 detection dataset. One can find that the prediction score
threshold is lower (0.3 used in the examples) than the value
(greater than 0.5) used in traditional object detection like

faster-RCNN (Ren et al. 2017). It indicates that the predic-
tion of ZSD has less confidence than that of traditionally
seen detection. As zero-shot method does not observe any
training instances of unseen classes during the whole learn-
ing process, the confidence of prediction cannot be as strong
as the seen counterpart. Moreover, a ZSD method needs to
correspond visual features with semantic word vectors which
are generally noisy. This degrades the overall confidence for
ZSD.

In the last layer of the box regression branch, our method
does not have specified bounding boxes for un-seen classes.
Instead, bounding box corresponding to a closely related seen
class that has the maximum score is used for un-seen local-
ization. Therefore, a correct unseen class prediction does not
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Fig. 8 Examples of incorrect detection but correct classification. The unseen class ‘bow-tie’, ‘pineapple’ and ‘bench’ are incorrectly localized in
these images. . Images are from ILSVRC-2017 detection dataset

Fig. 9 Word cloud based on a number of object instance bMean object
size in pixel

always provide/obtain very accurate localizations, as illus-
trated in Fig. 8.

5.9 Discussion

ZSDChallenges: In general, detection is amore difficult task
than recognition/tagging because the bounding box must be
located at the same time. The strict requirement of not using
any unseen class images during the zero-shot training is a
tough enough condition for recognition/tagging tasks, which
is significantly intensified in detection tasks. We have used
the ILSVRC-2017 detection dataset to evaluate some base-
line performances of the proposed problem. This dataset has
200 classes, including a total of 478,807 object instances of
different shapes/sizes and distributions (see Fig. 9). Within
these, we define M = 14 meta classes, which contain one
or more specific classes. Figure 4 describes the normalized
number of instances per classwithin eachmeta class. Consid-
ering this challenging dataset, here we describe some other
difficulties of the zero shot detection task:

– Rarity: The ILSVRC dataset contains a long-tail distri-
bution issue, i.e., many rare classes have a lower number
of instances. It is apparent that an unseen class should
be within the set of rare classes. To address this fact, we
randomly choose unseen classes from each meta-class

Table 11 Comparison of seen and unseen class performance using
ResNet as convolution layers

mAP Step 1 Baseline Ours Our
(L ′

mm ) (Lcls )

Seen 33.7 33.4 27.7 26.1

Unseen (all) – 12.7 15.0 16.4

Unseen (selected) – 18.6 22.7 27.4

word2vec is used for baseline, our (L ′
mm ) and our (Lcls ). Best perfor-

mance in each row are shown as bold.We refer Unseen (all): mAP of all
unseen classes, Unseen (selected): mAP of selected classes for which
visually similar classes are present

z j , which lie in the rarest 50% in the distribution. This
affects the zero-shot version of the problem as well.

– Object size: Some rare object classes, like syringe, lady-
bug etc., usually have a small size. Smaller objects are
difficult to detect, as well as recognize.

– High Diversity: Every meta-class has a different num-
ber of classes and there exists a high visual diversity
between meta-class images. Since being in a same meta-
class does not guarantee visual similarity, it is difficult
to learn relationships for the unseen categories that are
quite different from the seen categories in the same super-
class.As an example, ‘tiger’ hasmore similar classes than
‘ray’. The scarcity of similar classes produces an inade-
quate description of the unseen class, which eventually
affects the zero shot detection performance.

– Noise in semantic space:We use unsupervised semantic
embedding vectors word2vec/GloVe as the class descrip-
tion. Such embeddings are noisy as they are generated
automatically from unannotated text mining. This also
affects the zero-shot detection performance significantly.

Seen Versus Unseen Class Performance: The overall
performance of ZSD is dependent on the learning of seen
classes. Therefore, the performance of seen-class detection
can be an indication of how ZSD works. To this end, we
also study the detection performance for seen classes of the
ILSVRCvalidation dataset after the first step of faster-RCNN
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training (Table 11). It indicates the baseline performance
of seen classes that leads to our final ZSD performance on
the unseen. The baseline method result is better than our
proposed approaches. This is justifiable since our proposed
methods generate predictions for both seen and unseen class
together, which somewhat sacrifices the seen performance
to achieve distinction among all seen and unseen classes.
Table 11 also compares the seen result with the unseen per-
formance. It is found that the performance of selected unseen
classes is similar to that of seen classes for our (Lcls) method.
This indicates the balanced generalization of ZSD in both
seen and unseen classes.

Learning Without Meta-class: For some applications,
the meta-class based supervision may not be available. In
such cases, one can define a meta-class in an unsupervised
manner by applying a clustering mechanism on the original
semantic embedding.

ZSLVersus ZSD Loss:Many traditional non-end-to-end
trainable ZSR methods consider different aspects of reg-
ularization (Morgado and Vasconcelos 2017), transductive
setting (Li et al. 2017), metric learning (Maxime Bucher and
Jurie 2016), domain adaptation (Kodirov et al. 2015) and
class attribute association (Al-Halah et al. 2016) etc. Sim-
ilarly, the end-to-end trainable ZSR methods (Zhang et al.
2017; Lei Ba et al. 2015) employ different non-linearities in
feature and semantic pipeline.However, those traditional loss
formulations must be redesigned for ZSD to be compatible
with both classification and box detection losses.

Future Challenges: The ZSD problem warrants further
investigation. (1) Instead of mapping image features to the
semantic space, the reverse mapping can help ZSD as it
does for the case of ZSR (Kodirov et al. 2017; Zhang et al.
2017). (2)ZSDmight benefit from fusing different word vec-
tors (word2vec and GloVe). (3) Like generalized ZSL (Xu
et al. 2017; Xian et al. 2018a; Li et al. 2017), a general-
ized ZSD setting can be explored, which represents a more
realistic set-up. (4) Moreover, weakly/semi-supervised ver-
sion of ZSD/GZSD is also an interesting direction for further
research.

6 Conclusion

While traditional ZSL research focuses only on object recog-
nition, we propose to extend the problem to object detection
(ZSD). To this end, we offer a new experimental protocol
for the ILSVRC-2017 dataset, specifying the seen–unseen,
train-test split.We also develop an end-to-end trainable CNN
model to solve this problem.Our proposed approach employs
a novel loss function to relate semantic and visual features of
seen object classes with the unseen objects.We show that our
solution is better than a strong baseline and recently reported
zero-shot detection approaches.

Overall, this research throws several new challenges to the
ZSL community. Tomake long-standing progress in ZSL, the
community needs to move forward in the detection setting
rather than merely recognition. Furthermore, the interesting
extensions of ZSD setting, such as the any-shot detection
(Rahman et al. 2020b), can lead to more practical scenarios
close to the real-world.
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